Group Orthogonal Matching Pursuit for Logistic Regression
نویسندگان
چکیده
We consider a matching pursuit approach for variable selection and estimation in logistic regression models. Specifically, we propose Logistic Group Orthogonal Matching Pursuit (LogitGOMP), which extends the Group-OMP procedure originally proposed for linear regression models, to select groups of variables in logistic regression models, given a predefined grouping structure within the explanatory variables. We theoretically characterize the performance of Logit-GOMP in terms of predictive accuracy, and also provide conditions under which LogitGOMP is able to identify the correct (groups of) variables. Our results are non-asymptotic in contrast to classical consistency results for logistic regression which only apply in the asymptotic limit where the dimensionality is fixed or is restricted to grow slowly with the sample size. We conduct empirical evaluation on simulated data sets and the real world problem of splice site detection in DNA sequences. The results indicate that Logit-GOMP compares favorably to Logistic Group Lasso both in terms of variable selection and prediction accuracy. We also provide a generic version of our algorithm that applies to the wider class of generalized linear models.
منابع مشابه
Group Orthogonal Matching Pursuit for Variable Selection and Prediction
We consider the problem of variable group selection for least squares regression, namely, that of selecting groups of variables for best regression performance, leveraging and adhering to a natural grouping structure within the explanatory variables. We show that this problem can be efficiently addressed by using a certain greedy style algorithm. More precisely, we propose the Group Orthogonal ...
متن کاملGrouped Orthogonal Matching Pursuit for Variable Selection and Prediction
We consider the problem of variable group selection for least squares regression, namely, that of selecting groups of variables for best regression performance, leveraging and adhering to a natural grouping structure within the explanatory variables. We show that this problem can be efficiently addressed by using a certain greedy style algorithm. More precisely, we propose the Group Orthogonal ...
متن کاملBlock Variable Selection in Multivariate Regression and High-dimensional Causal Inference
We consider multivariate regression problems involving high-dimensional predictor and response spaces. To efficiently address such problems, we propose a variable selection method, Multivariate Group Orthogonal Matching Pursuit, which extends the standard Orthogonal Matching Pursuit technique. This extension accounts for arbitrary sparsity patterns induced by domain-specific groupings over both...
متن کاملModified Orthogonal Matching Pursuit Algorithm for Cognitive Radio Wideband Spectrum Sensing
Sampling rate is the bottleneck for spectrum sensing over multi-GHz bandwidth. Recent progress in compressed sensing (CS) initialized several sub-Nyquist rate approaches to overcome the problem. However, efforts to design CS reconstruction algorithms for wideband spectrum sensing are very limited. It is possible to further reduce the sampling rate requirement and improve reconstruction performa...
متن کاملCooperative Orthogonal Matching Pursuit strategies for sparse approximation by partitioning
Cooperative Orthogonal Matching Pursuit strategies are considered for approximating a signal partition, subjected to a global constraint on sparsity. The approach is designed to produce a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation and i...
متن کامل